Using Al:
Pneumonia Detection

Shreya Narayanan, Divina Minocha, Meera Patel,
Helena Kromann, Samika Jain & Kevin Xu

R

Table of contents

01

Introduction

An introduction to
Pneumonia and
Radiology

04

Our data sets

How have our datasets
been used to achieve
maximum efficiency

02 03

Classification Our Model
How does an Al classify How an image is classified as
images to detect if a healthy or pneumonia

person has pneumonia?

05 06

Our data sets Issues

Images and examples How did we solve the
issues we came across?

Table of contents

07 08 09

Summary Applications Conclusion
How does all this data How it can be integrated, A summary of what we
contribute to the overall and be applied in the real have learnt and how it
idea of identifying world + the benefits of will help the real world.

pneumonia? using this model

N

RN
17 % AR
SN BINRONS]
S WARYY

ANV

AP R8 NG LY
(i\\oo'eﬁsi- &
e~

>

What have you heard about the applications of
Al in healthcare? Let us know in the chat!

Al in medicine '

What is pneumonia? How do we detect it?

e Inflammation of air sacs e Blood tests

e Fluidinthe lungs e X-Rays

e Caused by viruses, bateria, or most
recently strains due to COVID-19

2,500,000

People die of pneumonia every year
(and those are just the ones that are recorded!)

https://ourworldindata.org/grapher/death-rates-f
rom-pneumonia-and-other-lower-respiratory-infe
ctions-vs-gdp-per-capita?xScale=linear&yScale=li
near&tab=chart" loading="lazy" style="width:
100%: height: 600px; border: Opx none;"
allow="web-share; clipboard-write"

The Coding Process

Building & Training our model

What is Metadata?

Metadata is the information about
the images...
e Class: O (healthy) and 1
(pneumonia)
e |ndex:the locationinour
metadata
e Rows: How many images we
have in total

class

2395
2396
2397
2398

2399

NANN vmiaim ..

0.0

0.0

1.0

0.0

1.0

1.0

0.0

0.0

1.0

0.0

split

train
train
train
train

train

test
test
test
test

test

Lo BP0 POV

index

2395

2396

2397

2398

2399

/4

Our Al Model

CNN Model

e Combination of neurons
® Processesimages like our visual system

® ltusestheinputimages and learns about features using spatial
relationships which are processed into patterns to classify the image.

MLP Model

e Flattened

® It processes dataone step at atime to understand context and then adjusts

to learn patterns and make predictions.

Our Datasets

1. Data Splits X_train, y_train = get_train_data()

X_test, y_test get_test_data()

e Training data: Labelled images

Initializing training and testing data /
e Testdata: Used to evaluate the /
model's performance after i) i
. X_field , y_field = get_field_data()
e Field data: Real world data Initializing field data \

//\

Our Datasets

2. Network Architecture

e Layers: Convolutional and
Dense Layers

e Convolutional: ReLU
activation, convolutional
operations to images

e Dense: fully connected,
flattened feature maps output layer
. input layer
e Transfer Learning: Faster
training!

hidden layer

CoONOOUD WNER

25

Code snippets!

#@title Run this to test if your model is right!
model_1_answer = Sequential()
model_1_answer.add(InputLayer(input_shape=(3,)))

model_1_answer.add(Dense(4, activation = 'relu'))
model_1_answer.add(Dense(2, activation = 'softmax'))
model_1_answer.compile(loss="'categorical_crossentropy',
optimizer = 'adam',

metrics = ['accuracy'l]l)

model_1_config = model_1l.get_config()

del model_1_config["name"] [4]
for layer in model_1_config['" layers"]:
del layer["config"]["name"]

model_1_answer_config = model_1_answer.get_config()
del model_1_answer_config['"name"]

for layer in model_1_answer_config["layers"]:
del layer["config"]["name"]

if model_1_answer_config == model_1_config:
print('Good job! Your model worked')
ellse:

print('Please check your code again!')

3% Good job! Your model worked

Testing

O 00 ~N O UT &~ W N -

YOUR CODE HERE:
model_1 = Sequential()
model_1.add(InputLayer(input_shape=(3,)))
model_1.add(Dense(4, activation = 'relu'))
model_1.add(Dense(2, activation = 'softmax'))
model_1.compile(loss="'categorical_crossentropy',
optimizer = 'adam',
metrics = ['accuracy'])
END CODE

Initializing

//\

RN

Results

1 for i in range (3):

2 plot_one_image(X_train, y_train, i)

3 plot_one_image(X_test, y_test, 1)

4 plot_one_image(X_field, y_field, 1)
Label: 0.0

S5y

-
c
2
]
v
s
e
e
=
>
O
I
1
=
v
O
<

—— Validation
Training

=== Chance

—== Best Epoch

Code snippets(Transfer Learning)!

e e ¥ e

Accuracy (Fraction)

o
o

—— Validation
Training

-~ Chance 1 transfer = TransferClassifier(name = 'VGG16')
) 2 transfer.fit(X_train, y_train, epochs = 20, validation_data = (X_test, y_test), \

o
¢

o
'S

mEpoch# ° shuffle = True, callbacks = [monitor])

Result Initializing transfer learning

//\

Our Datasets

0 - £
Training s
e Epochs: one complete pass of \

the training data set through
the algorithm

e What does the number of
epochs depend on?

X ff.r(
C

D
@

e Accuracy: hidden layers,
epochs and augmentation

© Input Layer O Hidden Layer @ Output Layer

P o Voo ~NOOULLEAE WN

=

13
14
ill5
16
117/
18
19

YOUR CODE HERE

X_train, y_train
X test, y test
X_field, y_field

average_accuracy = 0.0
for i in range(5):

get_train_datal()
get_test_data()
get_field_data()

cnn_temp = CNNClassifier(5)
cnn_temp. fit(X_train, y_train, epochs = 5, validation_data = (X_test,
y_test), shuffle = True, callbacks = [monitor])

y_pred = (cnn_temp.predict(X_field) > 0.5)
accuracy = accuracy_score(y_field, y_pred)
print('Accuracy on this run: %0.2f' % accuracy)

average_accuracy += accuracy / 5.0

print('Average accuracy:
END CODE

, average_accuracy)

Code

Code snippets!

Accuracy on this run: .50
Average accuracy: 0.5005000000000001

Accuracy can be very low!

/\

Issues and
Solutions

Throughout model-building, we encountered
many problems. This is how we solved them:

#1: Field Data

Our friends have provided us some more data!
’ Hooray!

i

SN

When we run .predict(), the resulting
accuracy isonly 74%

y_pred = cnn.predict(X_field) > 0.5
accuracy = accuracy_score(y field, y pred)
print(accuracy)

13/33: | - ©s 3ms/step

0.74

@ Train

T

Fix - Augmentations

‘ Train dataset

image = X_train

Augmented
dataset

new_image =
rotate(image, rotate =
-40)

f

P ———

Creating More!

rotated_L10 = rotate(X_train, rotate=-10)
rotate_R90 rotate(X_train, rotate=990)
rotate_L90 = rotate(X_train, rotate=-99)
shear_R20 = shear(X_train, shear=20)
shear_L20 = shear(X_train, shear=-20)

sh_ro_R90_R20 shear(rotate_R90, shear=20)
sh_ro_R90_L20 shear(rotate_R90, shear=-20)
sh_ro_L90_R20 shear(rotate_L90, shear=20)
sh_ro_L90_L20 shear(rotate_L90, shear=-20)
red_train = remove_color(remove_color(X_train, channel = 1), channel = 2)

Higher Accuracy!
:)

#2: Overfitting

- Model is too specialized
- “Memorizes” the training data

i

Whatis it?

Performing well on the training set but
poorly on the validation set

Accuracy (Fraction)

I
I
I
|
I
I
|
|
I
|
I
|
|
|
I
|
|
I
|
T
I
|
I
I

—— Validation
- Training

=== Chance

=== Best Epoch

30
Epoch #

B

X_train, y_train = get_train_data()
X_test, y_test = get_test_data()
cnn = (NNClassifier(num_hidden_layers=2)
history = cnn.fit(X_train, y_train,epochs=50, batch_size=32, validation_data=
0 (X_test, y_test),
FIX - 5 callbacks=[monitor])
6 plot_acc(history)

7

R fred 63/63 [8ms/step - loss: 1.2277 - accuracy: 0.9125 - val_loss: val_accuracy:
— Epoch 36/50

63/63 [] - 1s 8ms/step - loss: 1.2080 - accuracy: 0.9150 - val_loss: 1.3425 - val_accuracy: 0.8275
Epoch 37/50

E OC hs 63/63 [] - @s 8ms/step - loss: 1.1986 - accuracy: 0.9175 - val_loss: 1.3463 - val_accuracy: 0.8150
Epoch 38/50

B W N =

63/63 [] - 0s 7ms/step - loss: 1.1780 - accuracy: 0.9175 - val_loss: 1.3534 - val_accuracy: 0.8125
Epoch 39/50
63/63 [] - 0s 7ms/step - loss: 1.1735 - accuracy: 0.9180 - val_loss: 1.3361 - val_accuracy: 0.8150
Epoch 40/50
63/63 [] - @s 7ms/step - loss: 1.1639 - accuracy: 0.9205 - val_loss: 1.3401 - val_accuracy: 0.8150

Epoch 41/50

Too many epochs = possible
overfitting
\ Not enough epochs = possible

Size Size Size H
underfittin
B+ Byx B+ Byx + By B+ Brx + Byx2 + Byx3 + By &
High Bias Low Bias, Low Variance High Variance
(Underfitting) (Goodfitting) (Overfitting) aYal

N\

Confusion matrix

grab our plotting package
import seaborn as sns
import matplotlib.pyplot as plt

sns.heatmap(confusion, annot = True, fmt = 'd', cbar_kws={'label':'count'});
plt.ylabel('Actual');
plt.xlabel('Predicted');

Predicted

Visualisation of the confusion matrix

v
%)
=
3]
>
©
Q
—
S
©
@
S
(=W

Actual Values

Positive (1) Negative (0)

Positive (1) TP FP

Negative (0) FN

Model confusion matrix

Summary

Our goal

Pneumonia or healthy
from chest X-rays

Types of Data

Training, test and field

Classification

Images, Labelling and
CNN

Issues

Overfitting and variation

T~

Real World Application & Integration

e Thiswould be relatively
easy to implement

e Start off by usingit
alongside doctors

e Develop a high enough
accuracy rate to use alone

P

Benefits of using this model: \

A

Accuracy Levels Rate of Detection

©

Economic Factors

=

Nla
N \‘v

p7 | ‘
4

Thank
you!

We are happy to answer questions-about
the process, the coding, or anything else!

