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What have you heard about the applications of
Al in healthcare? Let us know in the chat!

Al in medicine '




What is pneumonia? How do we detect it?

e Inflammation of air sacs e Blood tests

e Fluidinthe lungs e X-Rays

e Caused by viruses, bateria, or most
recently strains due to COVID-19




2,500,000

People die of pneumonia every year
(and those are just the ones that are recorded!)




https://ourworldindata.org/grapher/death-rates-f
rom-pneumonia-and-other-lower-respiratory-infe
ctions-vs-gdp-per-capita?xScale=linear&yScale=li
near&tab=chart" loading="lazy" style="width:
100%: height: 600px; border: Opx none;"
allow="web-share; clipboard-write"




The Coding Process

Building & Training our model



What is Metadata?

Metadata is the information about
the images...
e Class: O (healthy) and 1
(pneumonia)
e |ndex:the locationinour
metadata
e Rows: How many images we
have in total
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Our Al Model

CNN Model

e Combination of neurons
® Processesimages like our visual system

® ltusestheinputimages and learns about features using spatial
relationships which are processed into patterns to classify the image.

MLP Model

e Flattened

® It processes dataone step at atime to understand context and then adjusts

to learn patterns and make predictions.









Our Datasets

1. Data Splits X_train, y_train = get_train_data()

X_test, y_test get_test_data()

e Training data: Labelled images

Initializing training and testing data /
e Testdata: Used to evaluate the /
model's performance after i ) i
. X_field , y_field = get_field_data()
e Field data: Real world data Initializing field data \

//\



Our Datasets

2. Network Architecture

e Layers: Convolutional and
Dense Layers

e Convolutional: ReLU
activation, convolutional
operations to images

e Dense: fully connected,
flattened feature maps output layer
. input layer
e Transfer Learning: Faster
training!

hidden layer
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Code snippets!

#@title Run this to test if your model is right!
model_1_answer = Sequential()
model_1_answer.add(InputLayer(input_shape=(3,)))

model_1_answer.add(Dense(4, activation = 'relu'))
model_1_answer.add(Dense(2, activation = 'softmax'))
model_1_answer.compile(loss="'categorical_crossentropy',
optimizer = 'adam',

metrics = ['accuracy'l]l)

model_1_config = model_1l.get_config()

del model_1_config["name"] [4]
for layer in model_1_config['" layers"]:
del layer["config"]["name"]

model_1_answer_config = model_1_answer.get_config()
del model_1_answer_config['"name"]

for layer in model_1_answer_config["layers"]:
del layer["config"]["name"]

if model_1_answer_config == model_1_config:
print('Good job! Your model worked')
ellse:

print('Please check your code again!')

3% Good job! Your model worked

Testing
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### YOUR CODE HERE:
model_1 = Sequential()
model_1.add(InputLayer(input_shape=(3,)))
model_1.add(Dense(4, activation = 'relu'))
model_1.add(Dense(2, activation = 'softmax'))
model_1.compile(loss="'categorical_crossentropy',
optimizer = 'adam',
metrics = ['accuracy'])
### END CODE

Initializing

//\
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Results

1 for i in range (3):

2 plot_one_image(X_train, y_train, i)

3 plot_one_image(X_test, y_test, 1)

4 plot_one_image(X_field, y_field, 1)
Label: 0.0
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Code snippets(Transfer Learning)!

e e ¥ e

Accuracy (Fraction)

o
o

—— Validation
Training

-~ Chance 1 transfer = TransferClassifier(name = 'VGG16')
) 2 transfer.fit(X_train, y_train, epochs = 20, validation_data = (X_test, y_test), \

o
¢

o
'S

mEpoch# ° shuffle = True, callbacks = [monitor])

Result Initializing transfer learning

//\



Our Datasets

0 - £
Training s
e Epochs: one complete pass of \

the training data set through
the algorithm

e What does the number of
epochs depend on?

X ff.r(
C

D
@

e Accuracy: hidden layers,
epochs and augmentation

© Input Layer O Hidden Layer @ Output Layer
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### YOUR CODE HERE

X_train, y_train
X test, y test
X_field, y_field

average_accuracy = 0.0
for i in range(5):

get_train_datal()
get_test_data()
get_field_data()

cnn_temp = CNNClassifier(5)
cnn_temp. fit(X_train, y_train, epochs = 5, validation_data = (X_test,
y_test), shuffle = True, callbacks = [monitor])

y_pred = (cnn_temp.predict(X_field) > 0.5)
accuracy = accuracy_score(y_field, y_pred)
print('Accuracy on this run: %0.2f' % accuracy)

average_accuracy += accuracy / 5.0

print('Average accuracy:
### END CODE

, average_accuracy)

Code

Code snippets!

Accuracy on this run: .50
Average accuracy: 0.5005000000000001

Accuracy can be very low!

/\



Issues and
Solutions

Throughout model-building, we encountered
many problems. This is how we solved them:




#1: Field Data

Our friends have provided us some more data!
’ Hooray!

i
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When we run .predict(), the resulting
accuracy isonly 74%

y_pred = cnn.predict(X_field) > 0.5
accuracy = accuracy_score(y field, y pred)
print(accuracy)

13/33: | - ©s 3ms/step

0.74
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Fix - Augmentations

‘ Train dataset

image = X_train

Augmented
dataset

new_image =
rotate(image, rotate =
-40)

f
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Creating More!

rotated_L10 = rotate(X_train, rotate=-10)
rotate_R90 rotate(X_train, rotate=990)
rotate_L90 = rotate(X_train, rotate=-99)
shear_R20 = shear(X_train, shear=20)
shear_L20 = shear(X_train, shear=-20)

sh_ro_R90_R20 shear(rotate_R90, shear=20)
sh_ro_R90_L20 shear(rotate_R90, shear=-20)
sh_ro_L90_R20 shear(rotate_L90, shear=20)
sh_ro_L90_L20 shear(rotate_L90, shear=-20)
red_train = remove_color(remove_color(X_train, channel = 1), channel = 2)

Higher Accuracy!
:)



#2: Overfitting

- Model is too specialized
- “Memorizes” the training data

i



Whatis it?

Performing well on the training set but
poorly on the validation set

Accuracy (Fraction)
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X_train, y_train = get_train_data()
X_test, y_test = get_test_data()
cnn = (NNClassifier(num_hidden_layers=2)
history = cnn.fit(X_train, y_train,epochs=50, batch_size=32, validation_data=
0 (X_test, y_test),
FIX - 5 callbacks=[monitor])
6 plot_acc(history)

7

R fred 63/63 [ 8ms/step - loss: 1.2277 - accuracy: 0.9125 - val_loss: val_accuracy:
— Epoch 36/50

63/63 [ ] - 1s 8ms/step - loss: 1.2080 - accuracy: 0.9150 - val_loss: 1.3425 - val_accuracy: 0.8275
Epoch 37/50

E OC hs 63/63 [ ] - @s 8ms/step - loss: 1.1986 - accuracy: 0.9175 - val_loss: 1.3463 - val_accuracy: 0.8150
Epoch 38/50

B W N =

63/63 [ ] - 0s 7ms/step - loss: 1.1780 - accuracy: 0.9175 - val_loss: 1.3534 - val_accuracy: 0.8125
Epoch 39/50
63/63 [ ] - 0s 7ms/step - loss: 1.1735 - accuracy: 0.9180 - val_loss: 1.3361 - val_accuracy: 0.8150
Epoch 40/50
63/63 [ ] - @s 7ms/step - loss: 1.1639 - accuracy: 0.9205 - val_loss: 1.3401 - val_accuracy: 0.8150

Epoch 41/50

Too many epochs = possible
overfitting
\ Not enough epochs = possible

Size Size Size H
underfittin
B+ Byx B+ Byx + By B+ Brx + Byx2 + Byx3 + By &
High Bias Low Bias, Low Variance High Variance
(Underfitting) (Goodfitting) (Overfitting) aYal
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Confusion matrix

# grab our plotting package
import seaborn as sns
import matplotlib.pyplot as plt

sns.heatmap(confusion, annot = True, fmt = 'd', cbar_kws={'label':'count'});
plt.ylabel('Actual');
plt.xlabel('Predicted');

Predicted

Visualisation of the confusion matrix
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Actual Values

Positive (1) Negative (0)

Positive (1) TP FP

Negative (0) FN

Model confusion matrix



Summary

Our goal

Pneumonia or healthy
from chest X-rays

Types of Data

Training, test and field

Classification

Images, Labelling and
CNN

Issues

Overfitting and variation
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Real World Application & Integration

e Thiswould be relatively
easy to implement

e Start off by usingit
alongside doctors

e Develop a high enough
accuracy rate to use alone

P




Benefits of using this model: \

A

Accuracy Levels Rate of Detection

©

Economic Factors

=
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Thank
you!

We are happy to answer questions-about
the process, the coding, or anything else!



